Роль декомпозиции
Как отмечает Дейкстра, "Способ управления сложными системами был известен еще в древности - divide et impera (разделяй и властвуй)" [16]. При проектировании сложной программной системы необходимо разделять ее на все меньшие и меньшие подсистемы, каждую из которых можно совершенствовать независимо. В этом случае мы не превысим пропускной способности человеческого мозга: для понимания любого уровня системы нам необходимо одновременно держать в уме информацию лишь о немногих ее частях (отнюдь не о всех). В самом деле, как заметил Парнас, декомпозиция вызвана сложностью программирования системы, поскольку именно эта сложность вынуждает делить пространство состояний системы [17].
Алгоритмическая декомпозиция. Большинство из нас формально обучено структурному проектированию "сверху вниз", и мы воспринимаем декомпозицию как обычное разделение алгоритмов, где каждый модуль системы выполняет один из этапов общего процесса. На рис. 1-2 приведен в качестве примера один из продуктов структурного проектирования: структурная схема, которая показывает связи между различными функциональными элементами системы. Данная структурная схема иллюстрирует часть программной схемы, изменяющей содержание управляющего файла. Она была автоматически получена из диаграммы потока данных специальной экспертной системой, которой известны правила структурного проектирования [18].
Объектно-ориентированная декомпозиция. Предположим, что у этой задачи существует альтернативный способ декомпозиции. На рис. 1-3 мы разделили систему, выбрав в качестве критерия декомпозиции принадлежность ее элементов к различным абстракциям данной проблемной области. Прежде чем разделять задачу на шаги типа Get formatted update (Получить изменения в отформатированном виде) и Add check sum (Прибавить к контрольной сумме), мы должны определить такие объекты как Master File (Основной файл) и Check Sum (Контрольная сумма), которые заимствуются из словаря предметной области.
Хотя обе схемы решают одну и ту же задачу, но они делают это разными способами.
Во второй декомпозиции мир представлен совокупностью автономных действующих лиц, которые взаимодействуют друг с другом, чтобы обеспечить поведение системы, соответствующее более высокому уровню. Get formatted update (Получить изменения в отформатированном виде) больше не присутствует в качестве независимого алгоритма; это действие существует теперь как операция над объектом File of Updates (Файл изменений). Эта операция создает другой объект - Update to Card (Изменения в карте). Таким образом, каждый объект обладает своим собственным поведением, и каждый из них моделирует некоторый объект реального мира. С этой точки зрения объект является вполне осязаемой вещью, которая демонстрирует вполне определенное поведение. Объекты что-то делают, и мы можем, послав им сообщение, попросить их выполнить то-то и то-то. Так как наша декомпозиция основана на объектах, а не на алгоритмах, мы называем ее объектно-ориентированной декомпозицией.
Рис. 1-2. Алгоритмическая декомпозиция.
Декомпозиция: алгоритмическая или объектно-ориентированная? Какая декомпозиция сложной системы правильнее - по алгоритмам или по объектам? В этом вопросе есть подвох, и правильный ответ на него: важны оба аспекта. Разделение по алгоритмам концентрирует внимание на порядке происходящих событий, а разделение по объектам придает особое значение агентам, которые являются либо объектами, либо субъектами действия. Однако мы не можем сконструировать сложную систему одновременно двумя способами, тем более, что эти способы по сути ортогональны [Лэнгдон предполагает, что эта ортогональность изучалась с древних времен. Он пишет: "К. X. Ваддингтон отметил, что такая дуальность взглядов прослеживается до древних греков. Пассивный взгляд предлагался Демокритом, который утверждал, что мир состоит из атомов. Эта позиция Демокрита ставила в центр всего материю. Классическим представителем другой стороны - активного взгляда - был Гераклит, который выделял понятие процесса"[34]]. Мы должны начать разделение системы либо по алгоритмам, либо по объектам, а затем, используя полученную структуру, попытаться рассмотреть проблему с другой точки зрения.
Опыт показывает, что полезнее начинать с объектной декомпозиции. Такое начало поможет нам лучше справиться с приданием организованности сложности программных систем. Выше этот объектный подход помог нам при описании таких непохожих систем, как компьютеры, растения, галактики и общественные институты. Как будет видно в дальнейшем (в главах 2 и 7), объектная декомпозиция имеет несколько чрезвычайно важных преимуществ перед алгоритмической. Объектная декомпозиция уменьшает размер программных систем за счет повторного использования общих механизмов, что приводит к существенной экономии выразительных средств. Объектно-ориентированные системы более гибки и проще эволюционируют со временем, потому что их схемы базируется на устойчивых промежуточных формах. Действительно, объектная декомпозиция существенно снижает риск при создании сложной программной системы, так как она развивается из меньших систем, в которых мы уже уверены. Более того, объектная декомпозиция помогает нам разобраться в сложной программной системе, предлагая нам разумные решения относительно выбора подпространства большого пространства состояний.
Преимущества объектно-ориентированных систем демонстрируются в главах 8-12 примерами прикладных программ, относящихся к различным областям. Следующая врезка сопоставляет объектно-ориентированное проектирование с более традиционными подходами.
Рис. 1-3. Объектно-ориентированная декомпозиция.